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a b s t r a c t

A procedure for the time-domain analysis of gravity dam–reservoir interaction is proposed. The dam and
a part of the reservoir with irregular geometry are modeled with finite elements. A high-order doubly
asymptotic open boundary condition is developed to model the remaining part of the reservoir simplified
as a semi-infinite layer of constant depth. This open boundary is temporally local, stable and converges
rapidly as the order increases. It is directly coupled with the commercial software ABAQUS by using a
sequential staggered implicit-implicit partition algorithm. Numerical examples demonstrate the high
accuracy and long-time stability of the proposed technique.
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1. Introduction

The computation of hydrodynamic pressure on dams is neces-
sary and important in the analysis of dam–reservoir interaction
under earthquakes. Research in this area was pioneered by
Westergaard [1]. He derived the analytical solution for a rigid
dam with a vertical upstream surface under a horizontal harmonic
ground motion. The added-mass method originated from his paper
has influenced the engineering design of dams since then. In 1967,
Chopra [2] developed an analytical formulation for the hydrody-
namic pressure of compressible water on a rigid dam with a verti-
cal upstream face under both horizontal and vertical earthquake
excitation. When the upstream face of a dam is inclined, water is
often simplified as being incompressible so that an analytical solu-
tion can be derived. For example, Chwang [3] presented an exact
solution for a rigid dam with an inclined upstream face of constant
slope by using a two-dimensional potential theory. In the compan-
ion paper, Chwang and Housner [4] employed the momentum-
balance principle to solve the same problem approximately. As
the dam is assumed to be rigid in the above studies, the effect of
dam–reservoir interaction cannot be considered. Chopra and his
coworkers [5,6] were the first to study the effects of flexible gravity
dam–reservoir interaction by employing the first few modes of
vibration of the dam obtained with an empty reservoir.

Analytical solutions are only available for reservoirs of regular
geometries, such as semi-infinite layers or prisms. When the reser-
ll rights reserved.

: +61 2 9385 6139.
voir geometry is irregular, numerical methods such as the finite
element method are necessary to analyze the dam–reservoir inter-
action. Substructure method is often applied (see Fig. 1). The part
of the reservoir with irregular geometry, called the near field, is
discretized with finite elements. To reduce the computational cost,
the finite element mesh is truncated at a distance from the dam.
The remaining part of the reservoir, called the far field, is simplified
as a semi-infinite layer with constant depth. The near and far fields
are coupled at the truncated boundary by satisfying the equations
of motion and continuity. Various methods have been developed to
model the far field. Saini, Bettess and Zienkiewicz [7] proposed the
infinite element to analyze the two-dimensional response of reser-
voir–dam system subjected to horizontal ground motions. Chopra
and his coworkers [8,9] developed efficient procedures to analyze
dam–reservoir interaction in the frequency domain. The finite
element discretization on the truncated boundary was combined
with a continuum representation in the infinite direction of the
reservoir.

A direct time-domain analysis is required when the dam exhib-
its nonlinear material behavior, for example, under earthquakes.
Zienkiewicz and Bettess [10] studied fluid–structure interaction
in the time domain by using Sommerfeld radiation condition to
approximate the far field. Tsai, Lee and Ketter [11] proposed an
accurate implicit semi-analytical transmitting boundary in the
time domain. Tsai and Lee [12] established the corresponding
time-domain models for the interaction analysis of dam–reservoir
system by using the substructure method. This approach is tempo-
rally global, i.e. requires the evaluation of convolution integrals. It
is expensive in computer time and memory for long-time analyses.

http://dx.doi.org/10.1016/j.compstruc.2011.01.014
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http://dx.doi.org/10.1016/j.compstruc.2011.01.014
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc


Fig. 1. A typical gravity dam–reservoir system.
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To improve computational efficiency, Yang, Tsai and Lee [13]
developed the explicit time-domain transmitting boundary which
employed only a few eigenmodes in the evaluation of the convolu-
tion integrals. When the boundary element method [14–16] is ap-
plied to a direct time-domain analysis, the formulation is spatially
and temporally global, which hinders its application to long-time
computations of large-scale engineering problems.

Since mid-1990s, high-order transmitting boundaries have been
proposed for the scalar wave equation. There is an extensive liter-
ature on this subject (see [17,18]). The high-order transmitting
boundaries are constructed to absorb propagating waves radiating
energy. The formulations are temporally local and more efficient
than global procedures. They are reported not to suffer from insta-
bility plagued earlier versions of high-order transmitting bound-
aries. For problems of two- and three-dimensional cavities, they
are shown to converge as the order increases. It is demonstrated
by Prempramote et al. [19] that these transmitting boundaries
are singly asymptotic at the high-frequency limit. They are efficient
for radiative fields where all of the field energy is propagating out
to infinity [20]. However, a semi-infinite reservoir with constant
depth has a cut-off frequency. When the excitation frequency is
close to or below the cut-off frequency, the wave field is not radi-
ative. The high-order transmitting boundaries break down at low
frequencies in a frequency domain analysis or at late times in a
time domain analysis [19].

One advance towards the modeling of an unbounded domain
with possible presence of non-radiative wave fields is the introduc-
tion of doubly asymptotic boundaries [20–24]. The dynamic stiff-
ness of the doubly asymptotic boundaries is selected to fit the
dynamic stiffness of the unbounded domain at both the high-fre-
quency limit and the low-frequency limit (i.e. statics). The result-
ing formulation is spatially global. The highest order reported in
the literature is three [25]. Another technique is the time-domain
realisation of the dynamic stiffness obtained in the frequency do-
main developed by Ruge, et al. [26] and Alpert, et al. [27]. A rational
approximation of the dynamic stiffness is constructed by curve-fit-
ting. When it is transformed to the time domain, a recursive for-
mula is obtained. Birk and Ruge [28] applied such a technique to
the dam–reservoir interaction analysis. Accurate results can be ob-
tained for long-time computations, but curve fitting by means of a
least-squares process has to be performed for each order of the ra-
tional approximation.

Another popular technique for modeling wave propagation is
the perfectly matched layer [29,30]. The performance of the per-
fectly matched layer is compared with that of a high-order trans-
mitting boundary in Reference [27].

Very recently, Prempramote et al. [19] proposed a high-order
doubly asymptotic open boundary condition for the one-dimen-
sional scalar wave equation by extending the work in Ref. [31].
The open boundary condition is constructed directly from the dif-
ferential equation of the dynamic stiffness matrix of an unbounded
domain without evaluating its solution at discrete frequencies.
This high-order doubly asymptotic boundary is capable of accu-
rately mimicking the unbounded domain over the entire frequency
range (i.e. from zero to infinity). For a one-dimensional problem
corresponding to one mode of the horizontal layer, the coefficients
of the open boundary condition are explicitly given. A boundary
condition of any order can be constructed straightforwardly. Excel-
lent accuracy and stability are observed for long-time transient
analysis.

The purpose of this paper is to extend the doubly asymptotic
open boundary condition by Prempramote et al. in Ref. [19] to
the analysis of the hydrodynamic pressure of a semi-infinite reser-
voir with constant depth. To facilitate the coupling with a commer-
cial finite element package, the formulation of the open boundary
condition is split into two parts. The first part is shown to be the
simple Sommerfeld radiation boundary, also called the viscous
boundary in the dynamic soil-structure interaction analysis, which
is spatially and temporally local. It can be included in the damping
matrix of the system. The second part includes all the high-order
terms and is governed by a system of first-order ordinary differen-
tial equations. This part can be interpreted as external forces ap-
plied on the truncated boundary. Applying a sequential staggered
implicit-implicit partition algorithm, the external forces are deter-
mined by the responses of the truncated boundary at the previous
time station. This formulation does not modify the element con-
nectivity and allows the direct coupling with a commercial finite
element software package supporting two-way data exchange.
This open boundary condition is implemented in the general-pur-
pose finite element software ABAQUS to analyze gravity dam–res-
ervoir interaction.

This paper is organized as follows. In Section 2, the finite ele-
ment formulation of dam–reservoir system is addressed. In Section
3, the scaled boundary finite element method is applied to derive a
semi-discrete governing equation on the truncated boundary. In
Section 4, a modal transformation is performed leading to a set
of uncoupled equations for modal dynamic stiffness. In Section 5,
the doubly asymptotic continued fraction solution of the dynamic
stiffness is presented. In Section 6, a high-order doubly asymptotic
open boundary condition is constructed by introducing auxiliary
variables. In Section 7, the numerical implementation of the open
boundary condition and the coupling with ABAQUS are addressed.
In Section 8, numerical examples of a rigid dam and a flexible dam
are presented. In the final section, conclusions are stated.

2. Finite element model of dam–reservoir system

A two-dimensional reservoir is addressed (Fig. 1). The water in
the reservoir is assumed to be compressible, inviscid and irrota-
tional with a small amplitude movement. The hydrostatic body
force is not considered in this paper as it can be simply superim-
posed to the hydrodynamic pressure. The acceleration vector of
water particles is denoted as f€ug ¼ ½€uxðx; z; tÞ; €uzðx; z; tÞ�T and the
hydrodynamic pressure as p = p(x,z, t). The reservoir is divided into
a near field including the irregular geometry and a far field extend-
ing to infinity with constant depth. The dam with possibly nonlin-
ear material property and the near-field reservoir are modeled by
finite elements. The hydrodynamic pressure p in the reservoir
where the water is treated as acoustic fluid satisfies the scalar
wave equation

Dp ¼ 1
c2

@2p
@t2 ð1Þ

with the Laplace operator D and the compression wave velocity

c ¼

ffiffiffiffi
K
q

s
; ð2Þ
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where K is the bulk modulus of water and q is the mass density. On
the dam–reservoir interface, the pressure should satisfy the bound-
ary condition (n stands for the outward normal of the boundary)

@p
@n
¼ �q€un: ð3Þ

The effect of surface waves on the hydrodynamic pressure on a
dam is considered to be negligible. The boundary condition on the
free surface is written as

p ¼ 0: ð4Þ

At the reservoir bottom,

@p
@n
¼ 0 or €un ¼ 0 ð5Þ

applies. At infinity, the radiation condition

@p
@n
¼ �

_p
c
; ð6Þ

should be satisfied.
Without considering the material damping, the finite element

formulation for the dam–reservoir system can be partitioned as

½Ms� 0 0
�½Q fs� ½Mff � ½Mfb�

0 ½Mbf � ½Mbb�

264
375 f€usg
f€pf g
f€pbg

8><>:
9>=>;þ

½Ks� ½Q sf � 0
0 ½Kff � ½Kfb�
0 ½Kbf � ½Kbb�

264
375 fusg
fpf g
fpbg

8><>:
9>=>;

¼
ffsg
fff g
�frg

8><>:
9>=>;; ð7Þ

where [M] stands for the mass matrix, [K] for the static stiffness ma-
trix, [Q] for the coupling matrix between solid and acoustic fluid and
{f} for the external force vector. Subscript s denotes degrees of free-
dom on the dam structure, subscript f denotes the degrees of freedom
of the near-field water except for those on the truncated boundary
that are denoted by the subscript b. Denoting the interaction load ap-
plied to the semi-infinite reservoir by the near-field water as {r}, the
external load applied to the near-field water on the truncated bound-
ary is equal to�{r}. The mass and stiffness matrices of water treated
as acoustic fluid are expressed in ABAQUS as

½Mf � ¼
Z

Vf

1
K
½N�T ½N�dV ; ð8Þ

½Kf � ¼
Z

Vf

1
q

@½N�T

@x
@½N�
@x
þ @½N�

T

@z
@½N�
@z

 !
dV ; ð9Þ

fff g ¼
Z

Sf

1
q
½N� @p

@x
dS; ð10Þ

where [N] are the shape functions of finite elements. In order to
solve Eq. (7) for the dam–reservoir system, the relationship be-
tween the interaction load {r} and the hydrodynamic pressure {p}
of the semi-infinite reservoir is required, and is presented in the fol-
lowing sections.

3. Scaled boundary finite element method for semi-infinite
reservoir with constant depth

The scalar wave equation in a semi-infinite reservoir with con-
stant depth (far field) can be solved analytically in the frequency
domain by the method of separation of variables. To facilitate the
coupling with the finite elements of the near-field reservoir, a
semi-analytical method is employed in this paper. The reservoir
is discretized along its depth by elements that have the same nodes
and shape functions as the finite elements. Several derivations
leading to similar semi-analytical approaches exist (see, e.g.,
Lysmer and Wass [32]; Song and Wolf [33]; Birk and Ruge [28]).
The scaled boundary finite-element method, developed to model
unbounded domains with arbitrary shape [33], is selected in this
paper considering the possibility of further extension of the
present technique to problems with more complex geometry.
The derivation of scaled boundary finite element method for elas-
todynamics is detailed in [33,34]. In this paper, the derivation is
summarized for the two-dimensional semi-infinite reservoir with
a vertical boundary (Fig. 2). Streamlined expressions are presented
for this special case.

The scalar wave equation in Eq. (1) is expressed as the equation
of motion

fLgpþ qf€ug ¼ 0; ð11Þ

where fLg ¼ ½ @=@x @=@z �T is the differential operator and q the
mass density, and the equation of continuity considering the volu-
metric stress–strain relationship of compressible water is written as

fLgTf€ug ¼ � 1
K
@2p
@t2 : ð12Þ

The vertical boundary of the semi-infinite reservoir is specified
by a constant coordinate xb. It is discretized by one-dimensional
elements (Fig. 2(a)). A typical element is shown in Fig. 2(b). The
vertical coordinates of the nodes of an element are arranged in
{zb}. The geometry of an element is interpolated using the shape
functions [N(g)] formulated in the local coordinate g as

zbðgÞ ¼ ½NðgÞ�fzbg: ð13Þ

The Cartesian coordinates of a point (x,z) inside the semi-infi-
nite reservoir are expressed as

xðnÞ ¼ xb þ n; zðn;gÞ ¼ zbðgÞ ¼ ½NðgÞ�fzbg; ð14Þ

where the coordinate n is equal to 0 on the vertical boundary. The
Jacobian matrix for the coordinate transformation from (x,z) to
(n,g) is expressed as

½JðgÞ� ¼
x;n z;n
x;g z;g

� �
¼

1 0
0 zb;g

� �
: ð15Þ

For a two-dimensional problem with a unit length in the third
dimension,

dV ¼ jJðgÞjdndg; ð16Þ

where jJ(g)j is the determinant of the Jacobian matrix. The partial
differential operator defined in Eq. (11) is expressed as

fLg ¼ ½JðgÞ��1 @
@n

@
@g

h iT
¼ fb1g @

@n
þ fb2ðgÞg @

@g
ð17Þ

with

fb1g ¼
1
0

� �
; fb2ðgÞg ¼ 1

jJðgÞj
0
1

� �
: ð18Þ

The governing differential equations in the local coordinates
(n,g) are specified by Eq. (12) with the differential operator {L} in
Eq. (17).

Along horizontal lines passing through a node on the boundary,
the nodal hydrodynamic pressure functions {p} = {p(n, t)} are intro-
duced. The nodal pressure on the boundary follows as {pb(t)} = {p(n
= 0, t)}. Isoparametric elements are used in the vertical direction.
One element Se on the boundary with the corresponding horizontal
strip shown in Fig. 2(b) is addressed. The hydrodynamic pressure
field p = p(n,g, t) is obtained by interpolating the nodal pressure
functions

p ¼ ½NðgÞ�fpg: ð19Þ



eS

e
topT

e
botT

V
+∞

BS
ξ ξ

+1

-1

0

η

(a) (b)

Fig. 2. Semi-discretization of semi-infinite reservoir with constant depth.
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For an acoustic fluid, the relationship between acceleration and
pressure is equivalent to that between stress and displacement in
stress analysis. Substituting Eqs. (19) and (17) into Eq. (11), the
acceleration f€ug ¼ f€uðn;gÞg is expressed as

f€ug ¼ � 1
q
ð½B1ðg�fpg;n þ ½B

2ðgÞ�fpgÞ ð20Þ

with

½B1ðgÞ� ¼ fb1g½NðgÞ�; ½B2ðgÞ� ¼ fb2ðgÞg½NðgÞ�;g: ð21Þ

Galerkin’s weighted residual method is applied. Eq. (12) is mul-
tiplied by a weighting function w = w(n,g) and integrated over the
semi-infinite strip corresponding to the element (Fig. 2(b))Z

V
wfb1gTf€u;ngdV þ

Z
V

wfb2gTf€u;ggdV þ
Z

V
w

1
K
@2p
@t2 dV ¼ 0: ð22Þ

Using Eq. (16) and integrating the second term of Eq. (22) over g
by parts yieldZ 1

0

Z 1

�1
wfb1gTf€ug;n �w;gfb2ðgÞgTf€ug þw

1
K

€p
� ��

� jJðgÞjdgþwfb2ðgÞgTf€ugjJðgÞk1
�1

	
dn ¼ 0: ð23Þ

Eq. (23) is satisfied by setting the integrand of the integral over
n equal to zeroZ 1

�1
wfb1gTf€ug;n �w;gfb2ðgÞgTf€ug þw

1
K

€p
� �
� jJðgÞjdgþwfb2ðgÞgTf€ugjJðgÞk1

�1 ¼ 0: ð24Þ

This corresponds to enforcing the scalar wave equation exactly
in the horizontal direction. Note that no volume integrals are pres-
ent in Eq. (24).

The weighting function is constructed in the same way as the
hydrodynamic pressure (Eq. (19))

wðn;gÞ ¼ ½NðgÞ�fwðnÞg: ð25Þ

Substituting Eq. (25) into Eq. (24) yields, for arbitrary {w(n)},Z 1

�1
½B1ðgÞ�Tf€ug;njJðgÞjdg�

Z 1

�1
½B2ðgÞ�Tf€ugjJðgÞjdg

þ
Z 1

�1
½NðgÞ�T 1

K
€pjJðgÞjdgþ fTg ¼ 0; ð26Þ

where {T} is the equivalent nodal acceleration vector resulting from
the acceleration distribution along the top and bottom of the strip

fTg ¼ ½NðgÞ�Tfb2ðgÞgTf€ugjJðgÞkþ1
�1: ð27Þ

Substituting Eq. (20) into Eq. (26) leads to the scaled boundary
finite element equation in hydrodynamic pressure

½E0�fpg;nn � ½E
2�fpg � ½M0�f€pg � fTg ¼ 0; ð28Þ
where [E0], [E2] and [M0] are coefficient matrices

½E0� ¼
Z 1

�1
½B1ðgÞ�T 1

q
½B1ðgÞ�jJðgÞjdg ¼

Z 1

�1
½NðgÞ�T 1

q
½NðgÞ�jJðgÞjdg;

ð29aÞ

½E2� ¼
Z 1

�1
½B2ðgÞ�T 1

q
½B2ðgÞ�jJðgÞjdg ¼

Z 1

�1
½NðgÞ�T;g

1
q
½NðgÞ�;g

1
jJðgÞj dg;

ð29bÞ

½M0� ¼
Z 1

�1
½NðgÞ�T 1

K
½NðgÞ�jJðgÞjdg ¼ 1

c2 ½E
0�: ð29cÞ

The horizontal strips corresponding to the individual elements
on boundary are assembled. The nodal acceleration vectors {T} can-
cel at the common boundaries. On the bottom of the reservoir, the
nodal acceleration vanishes (Eq. (5)). After enforcing the boundary
condition p(n, t) = 0 on the free surface, the scaled boundary finite
element equation for the two-dimensional semi-infinite reservoir
with constant depth is expressed as

½E0�fpg;nn � ½E
2�fpg � 1

c2 ½E
0�f€pg ¼ 0: ð30Þ

The standard numerical integration techniques in the finite ele-
ment method are directly applicable to evaluate these coefficient
matrices. Like the static stiffness and mass matrices in the finite
element method, the coefficient matrices [E0] and [E2] are sparse
and positive definite.

For acoustic fluid, the acoustic nodal load vector {r} = {r(n, t)} on
a vertical surface with a constant n is expressed as

frg ¼ �½E0�fpg;n: ð31Þ

It is the equivalent nodal vector of acceleration distribution
based on virtual work principle. Assuming the time-harmonic re-
sponse {p(n, t)} = {P(n,x)}e+ixt (x is the excitation frequency) with
the amplitudes of the hydrodynamic pressure {P} = {P(n,x)}, Eq.
(30) is transformed into the frequency domain as

½E0�fPg;nn � ½E
2�fPg þx2

c2 ½E
0�fPg ¼ 0: ð32Þ

The amplitudes of the acoustic nodal load {R} = {R(n,x)}
({r(n, t)} = {R(n,x)}e+ixt) are expressed as (Eq. (31))

fRg ¼ �½E0�fPg;n: ð33Þ
4. Modal decomposition of scaled boundary finite element
equation

The system of ordinary differential equations in Eq. (32) can be
decoupled by a modal transformation. The modes are obtained
from the following generalized eigenvalue problem (h�i stands
for a diagonal matrix)
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½E2�½U� ¼ ½E0�½U� k2
j

D E
=h2

; ð34Þ

where k2
j

D E
is the diagonal matrix of positive eigenvalues, [U] are

the eigenvectors representing the modes, and h is a characteristic
length (e.g. the depth of the layer) to non-dimensionlize the eigen-
values. The eigenvectors [U] are normalized as

½U�T ½E0�½U� ¼ ½I�: ð35Þ

Pre-multiplying Eq. (34) with [U]T results in

½U�T ½E2�½U� ¼ k2
j

D E
=h2

: ð36Þ

It is noted from Eq. (35) that the inverse of the eigenvector ma-
trix can be obtained by using the matrix multiplication

½U��1 ¼ ½U�T ½E0�: ð37Þ

The amplitudes of the hydrodynamic pressures are expressed as
a linear combination of the eigenvectors

fPg ¼ ½U�fePg; ð38Þ

where fePg ¼ fePðn;xÞg are the amplitudes of the modal hydrody-
namic pressures. Substituting Eq. (38) into Eq. (32) pre-multiplied
with [U]T and using Eqs. (35) and (36) lead to a system of decoupled
equations

ePj;nn þ
1

h2 a2
0 � k2

j


 	ePj ¼ 0 ð39Þ

with dimensionless frequency

a0 ¼
xh
c
; ð40Þ

where the index j indicates the modal number. Substituting Eq. (38)
into Eq. (33), the acoustic nodal force vector is expressed as

fRg ¼ �½E0�½U�fePg;n: ð41Þ

The amplitude of the modal nodal force vector feRg ¼ feRðn;xÞg
is defined as

feRg ¼ �hfePg;n or eRj ¼ �hePj;n: ð42Þ

Pre-multiplying Eq. (41) with [U]T and using Eqs. (35) and (42)
yield

feRg ¼ h½U�TfRg: ð43Þ

This equation transforms the amplitude of the acoustic nodal
force vector to the amplitude of the modal force vector. It can be
used together with Eq. (42) to specify the boundary condition for
the modal equation (Eq. (39)) from the prescribed amplitude of
acoustic nodal force vector {R}.

Eq. (39) can be solved analytically. The key equations given in
Ref. [19] are summarized in the following.

The modal dynamic stiffness coefficient eSjða0Þ is defined aseRj ¼ eSjða0ÞePj ð44Þ

with its solution equal to

eSjða0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � a2
0

q
: ð45Þ

Note that the modal dynamic stiffness is independent of the
horizontal coordinate n. Performing the inverse Fourier transfor-
mation of ePj determined from Eqs. (44) and (45) leads to

~pjðn; tÞ ¼
c
h

Z t

0
J0 kj

cðt � sÞ
h

� �
~rjðn; sÞds; ð46Þ

where J0 is the zero order first kind Bessel function. Substituting Eq.
(46) into Eq. (38) and using Eq. (43) yield
fpðn; tÞg ¼ c½U�
Z t

0
J0 kj

cðt � sÞ
h

� �� �
½U�Tfrðn; sÞgds: ð47Þ

When the time history of the nodal forces {r(n, t)} is prescribed
at a vertical boundary specified with a constant n, the nodal hydro-
dynamic pressure {p(n, t)} can be computed by using Eq. (47). How-
ever, this equation is temporally global, and the Bessel function
decays very slowly at a rate of 1=

ffiffi
t
p

. The computational effort in-
creases rapidly with the number of time steps.

5. Doubly asymptotic continued fraction solution for modal
dynamic stiffness

A temporally local open boundary condition is constructed in
Reference [19] for a single mode of wave propagation. It is based
on a doubly asymptotic solution of the modal dynamic stiffness
coefficient eSjða0Þ. By eliminating eRj and ePj from Eqs. (39), (42)
and (44), an equation for the dynamic stiffness coefficient eSjða0Þ
is derived

ðeSjða0ÞÞ2 þ a2
0 � k2

j ¼ 0: ð48Þ

The solution of Eq. (48) is expressed as a doubly asymptotic
continued fraction. An order MH high-frequency continued fraction
is constructed firsteSjða0Þ ¼ ðia0ÞeC1;j

�
k2

j

ðia0ÞeY ð1Þ1;j �
k2

j

ðia0ÞeY ð2Þ1;j �
k2

j

����
k2

j

ðia0ÞeY ðMHÞ
1;j �

k2
jeY ðMHþ1Þ

j ða0Þ

; ð49Þ

which is equivalent to

eSjða0Þ ¼ ðia0ÞeC1;j � k2
j
eY ð1Þj ða0Þ

 	�1

; ð50aÞ

eY ðiÞj ða0Þ ¼ ðia0ÞeY ðiÞ1;j � k2
j
eY ðiþ1Þ

j ða0Þ

 	�1

ði ¼ 1;2; . . . ;MHÞ; ð50bÞ

where the constants eC1;j and eY ðiÞ1;jði ¼ 1;2; . . . ;MHÞ are determined
by satisfying Eq. (48) at the high-frequency limit a0 ? +1. Substi-
tuting Eq. (50a) into Eq. (48) results in an equation in terms of a
power series of (ia0)

ðia0Þ2 eC2
1;j � 1


 	
þ k2

j �1� 2ðia0ÞeC1;j eY ð1Þj ða0Þ

 	�1

þ k2
j
eY ð1Þj ða0Þ

 	�2

� �
¼ 0: ð51Þ

This equation is satisfied by setting, in descending order, the
two terms to zero. The damping coefficient eC1;j is obtained from
the first term. To satisfy the radiation condition, the positive solu-
tion is chosen

eC1;j ¼ 1: ð52Þ

The second term of Eq. (51) is an equation for the residual termeY ð1Þj ða0Þ as eC1;j is known. To derive a recursive formula for deter-
mining the constants of the continued fraction, it is rewritten as
the i = 1 case of

k2
j � 2bðiÞ1;jðia0ÞeY ðiÞj ða0Þ � eY ðiÞj ða0Þ


 	2
¼ 0 ði ¼ 1;2; . . . ;MHÞ ð53Þ

with the constant

bð1Þ1;j ¼ 1: ð54Þ
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Substituting Eq. (50b) into Eq. (53) leads to an equation in terms
of a power series of (ia0)

�ðia0Þ2 eY ðiÞ1;j


 	2
þ2bðiÞ1;j

eY ðiÞ1;j

� �
þ k2

j 1þ2ðia0Þ eY ðiÞ1;jþbðiÞ1;j


 	 eY ðiþ1Þ
j ða0Þ


 	�1
� k2

j
eY ðiþ1Þ

j ða0Þ

 	�2

� �
¼ 0:

ð55Þ

Similar to the process from Eqs. (51)–(55), the coefficients in the
continued fraction in Eq. (50b) are determined by solving Eq. (55)
recursively

bðiÞ1;j ¼ ð�1Þiþ1 ði ¼ 1;2; . . . ;MHÞ; ð56ÞeY ðiÞ1;j ¼ �2bðiÞ1;j ¼ ð�1Þi2 ði ¼ 1;2; . . . ;MHÞ: ð57Þ

Using Eqs. (52) and (57), the high-frequency continued fraction in
Eq. (50a) is expressed as

eSjða0Þ ¼ ðia0Þ � k2
j
eY ð1Þj ða0Þ

 	�1

; ð58aÞ

eY ðiÞj ða0Þ ¼ ð�1Þi2ðia0Þ � k2
j
eY ðiþ1Þ

j ða0Þ

 	�1

ði ¼ 1;2; . . . ;MHÞ: ð58bÞ

It is shown in Prempramote et.al.[19] that the high-frequency
continued fraction does not converge below the cut-off frequency.
To determine a solution that is valid over the whole frequency
range, a low-frequency continued fraction solution is sought for
the residual term eY ðMHþ1Þ

j ða0Þ. Denoting the residual term for mode
j aseY L;jða0Þ ¼ eY ðMHþ1Þ

j ða0Þ: ð59Þ

The i = MH + 1 case of Eq. (53) is rewritten as

k2
j � 2bL;jðia0ÞeY L;jða0Þ � ðeY L;jða0ÞÞ2 ¼ 0 ð60Þ

with the constant

bL;j ¼ bðMHþ1Þ
1;j ¼ ð�1ÞMH : ð61Þ

The continued fraction solution for eY L;jða0Þ at the low-frequency
limit is written as

eY L;jða0Þ ¼ eY ð0ÞL0;j þ ðia0ÞeY ð0ÞL1;j �
ðia0Þ2eY ð1ÞL0;j �
ðia0Þ2eY ð2ÞL0;j �

ðia0Þ2

����
ðia0Þ2eY ðMLÞ

L0;j

: ð62Þ

It is equivalent to

eY L;jða0Þ ¼ eY ð0ÞL0;j þ ðia0ÞeY ð0ÞL1;j � ðia0Þ2 eY ð1ÞL;j ða0Þ

 	�1

; ð63aÞ

eY ðiÞL;jða0Þ ¼ eY ðiÞL0;j � ðia0Þ2 eY ðiþ1Þ
L;j ða0Þ


 	�1
ði ¼ 1;2; . . . ;MLÞ: ð63bÞ

The coefficients eY ð0ÞL1;j and eY ðiÞL0;jði ¼ 0;1;2; . . . ;MLÞ in Eq. (63) are
determined by satisfying Eq. (60) at the low-frequency limit
a0 ? 0. Substituting Eq. (63a) into Eq. (60) leads to an equation
in terms of a power series of (ia0)

k2
j � eY ð0ÞL0;j


 	2
� �

� ðia0Þ 2bL;j
eY ð0ÞL0;j þ 2eY ð0ÞL0;j

eY ð0ÞL1;j


 	
þ ðia0Þ2 �2bL;j

eY ð0ÞL1;j � eY ð0ÞL1;j


 	2
þ 2 eY ð0ÞL0;j þ ðia0Þ eY ð0ÞL1;j þ bL;j


 	
 	�
� eY ð1ÞL;j ða0Þ

 	�1

� ðia0Þ2 eY ð1ÞL;j ða0Þ

 	�2

�
¼ 0: ð64Þ

As the low-frequency solution is being sought, Eq. (64) is satis-
fied by setting the coefficients of the power series to zero in
ascending order. The constant term leads to two solutions for
eY ð0ÞL0;j, the one leading to the correct modal static dynamic stiffnesseSjða0 ¼ 0Þ ¼ kj should be chosen. Inspecting Eq. (49) witheY ðMHþ1Þ
j ð0Þ ¼ eY L;jð0Þ ¼ eY ð0ÞL0;j, the solution iseY ð0ÞL0;j ¼ ð�1ÞMHþ1kj: ð65Þ

For the coefficient of (ia0) term in Eq. (64), using Eq. (61), the
solution of eY ð0ÞL1;j iseY ð0ÞL1;j ¼ ð�1ÞMHþ1

: ð66Þ

The equation for the residual eY ð1ÞL;j ða0Þ is expressed as the i = 1
case of

ðia0Þ2 � 2bðiÞL;j
eY ðiÞL;jða0Þ � eY ðiÞL;jða0Þ


 	2
¼ 0 ði ¼ 1;2; . . . ;MLÞ ð67Þ

with the constant

bð1ÞL;j ¼ �bL;jkj ¼ ð�1ÞMHþ1kj: ð68Þ

After substituting Eq. (63b) into Eq. (67), following the proce-
dure for constructing the continued fraction solution at high
frequency, the solutions of eY ðiÞL0;jði ¼ 1;2; . . . ;MLÞ are recursively
obtained aseY ðiÞL0;j ¼ ð�1ÞMHþiþ12kj ði ¼ 1;2; . . . ;MLÞ: ð69Þ

For an order ML low-frequency solution, the residual ðia0Þ2eY ðMLþ1Þ
L;j ða0Þ


 	�1
is neglected. Using Eqs. (65), (66) and (69), the

low-frequency continued fraction solution in Eq. (63) is equal to

eY L;jða0Þ ¼ ð�1ÞMHþ1kj þ ð�1ÞMHþ1ðia0Þ � ðia0Þ2 eY ð1ÞL;j ða0Þ

 	�1

; ð70aÞ

eY ðiÞL;jða0Þ ¼ ð�1ÞMHþiþ12kj � ðia0Þ2 eY ðiþ1Þ
L;j ða0Þ


 	�1
ði ¼ 1;2; . . . ;MLÞ:

ð70bÞ

Combining the high-frequency solution (Eq. (49)) and the low-
frequency solution (Eq. (62)) by using Eq. (59) yields the doubly
asymptotic continued fraction solution. For example, the order
MH = ML = 2 doubly asymptotic continued fraction solution for
mode j is expressed as

eSjða0Þ ¼ ðia0Þ �
k2

j

�2ðia0Þ �
k2

j

2ðia0Þ �
k2

j

�kj � ðia0Þ � ðia0Þ2

2kj�
ðia0 Þ

2

�2kj

: ð71Þ
6. High-order doubly asymptotic open boundary

Following the procedure developed for the modal space in Ref-
erence [19], the acoustic force-pressure relationship in the time
domain is formulated by using the continued fraction solution of
the dynamic stiffness and introducing auxiliary variables. A system
of first-order ordinary differential equations with symmetric coef-
ficient matrices is obtained, which represents a temporally local
open boundary condition.

Substituting the first term of the continued fraction solution
(Eq. (58a)) into Eq. (44), the amplitude of modal force is written aseRj ¼ ðia0ÞePj � kj

eP ð1Þj ; ð72Þ
where the auxiliary variable eP ð1Þj is defined in

kj
ePj ¼ eY ð1Þj ða0ÞeP ð1Þj : ð73Þ

Using Eqs. (43) and (72), the amplitude of nodal force vector is
expressed as

hfRg ¼ ðia0Þ½U��TfePg � ½U��ThkjifeP ð1Þg: ð74Þ
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Substituting fePg ¼ ½U��1fPg (Eq. (38)) and [E0] = [U]�T[U]�1 (Eq.
(35)) into Eq. (74) leads to

hfRg ¼ ðia0Þ½E0�fPg � ½U��ThkjifeP ð1Þg: ð75Þ

Substituting Eq. (58b) into Eq. (73) leads to

kj
ePj ¼ �2ðia0ÞeP ð1Þj � kj

eP ð2Þj ; ð76Þ

where eP ð2Þj is defined as the i = 1 case in

kj
eP ðiÞj ¼ eY ðiþ1Þ

j ða0ÞeP ðiþ1Þ
j : ð77Þ

Substituting fePg ¼ ½U��1fPg (Eq. (38)) into Eq. (76) formulated
for all the modes yields

hkji½U��1fPg ¼ �2ðia0ÞfeP ð1Þg � hkjifeP ð2Þg: ð78Þ

Substituting the remaining terms of the continued fraction solu-
tion in Eq. (58b) into Eq. (77) results in

kj
eP ði�1Þ

j ¼ ð�1Þi2ðia0ÞeP ðiÞj � kj
eP ðiþ1Þ

j ði ¼ 2;3; . . . ;MHÞ ð79Þ

The residual term of an order MH high-frequency continued
fraction solution given by Eq. (77) at i = MH is the initial term of
the low-frequency continued fraction (Eq. (70a)). It is expressed as

kj
eP ðMHÞ

j ¼ eY ðMHþ1Þ
j ða0ÞeP ðMHþ1Þ

j ¼ eY L;jða0ÞeP ð0ÞL;j ð80Þ

with the auxiliary variable eP ð0ÞL;j ¼ eP ðMHþ1Þ
j . Substituting Eq. (70a) into

Eq. (80) leads to

kj
eP ðMHÞ

j ¼ ð�1ÞMHþ1kj
eP ð0ÞL;j þ ð�1ÞMHþ1ðia0ÞeP ð0ÞL;j � ðia0ÞeP ð1ÞL;j ; ð81Þ

where the auxiliary variable eP ð1ÞL;j is defined in the i = 1 case of

ðia0ÞeP ði�1Þ
L;j ¼ eY ðiÞL;jða0ÞeP ðiÞL;j: ð82Þ

Substituting Eq. (70b) into Eq. (82) leads to

ðia0ÞeP ði�1Þ
L;j ¼ ð�1ÞMHþiþ12kj

eP ðiÞL;j � ðia0ÞeP ðiþ1Þ
L;j ði ¼ 1;2; . . . ;MLÞ:

ð83Þ

For an order ML low-frequency continued fraction solution,eP ðMLþ1Þ
L;j ¼ 0 applies. Eqs. (75), (78), (79), (81) and (83) constitute a

system of linear equations for the amplitude of nodal force vector
{R}, the amplitude of nodal pressure vector {P}, and auxiliary vari-

ables feP ðiÞgði ¼ 1;2;3; . . . ;MHÞ and eP ðiÞL

n o
ði ¼ 0;1;2;3; . . . ;MLÞ. This

system of equations describes an acoustic nodal force-pressure
relationship equivalent to the doubly asymptotic continued frac-
tion solution of the modal dynamic stiffness. This formulation is
linear in (ia0) and can be directly transformed to the time domain.
The inverse Fourier transforms of Eqs. (75), (78), (79), (81) and (83)
divided by h are written as

frg ¼ 1
c
½E0�f _pg � 1

h
½U��Thkjif~pð1Þg; ð84Þ

1
h
hkji½U��1fpg ¼ �2

c
f _~pð1Þg � 1

h
hkjif~pð2Þg; ð85Þ

1
h

kj~p
ði�1Þ
j ¼ ð�1Þi 2

c
_~pðiÞj �

1
h

kj~p
ðiþ1Þ
j ði ¼ 2;3; . . . ;MHÞ; ð86Þ

1
h

kj~p
ðMHÞ
j ¼ ð�1ÞMHþ1 1

h
kj~p
ð0Þ
L;j þ ð�1ÞMHþ1 1

c
_~pð0ÞL;j �

1
c

_~pð1ÞL;j ; ð87Þ

1
c

_~pði�1Þ
L;j ¼ ð�1ÞMHþiþ1 2

h
kj~p
ðiÞ
L;j �

1
c

_~pðiþ1Þ
L;j ði ¼ 1;2; . . . ;MLÞ: ð88Þ

Assembling Eqs. (84)–(88) leads to a system of first order ordin-
ary differential equations with banded and symmetric coefficient
matrices. This system of ordinary differential equations relating
the interaction load {r} and hydrodynamic pressure {p} in the time
domain is a temporally local high-order open boundary condition
for the semi-infinite reservoir with constant depth. It is directly
established on the nodes of a vertical boundary. This boundary
condition can be coupled seamlessly with finite elements. How-
ever, it introduces auxiliary variables as additional degrees of free-
dom. The coupling with commercial software packages is not
feasible for a user without access to the source codes. To overcome
this difficulty, the following sequential staggered implicit-implicit
partition algorithm is adopted.
7. Numerical implementation in time domain

Substituting Eq. (84) into Eq. (7), the equation of motion of the
dam–reservoir system considering the interaction between the
near-field water and the semi-infinite reservoir is expressed as

½Ms� 0 0

�½Qfs� ½Mff � ½Mfb�

0 ½Mbf � ½Mbb�

2664
3775
f€usg

f€pf g

f€pbg

8>><>>:
9>>=>>;þ

1
c

0 0 0

0 0 0

0 0 ½E0�

2664
3775
f _usg

f _pf g

f _pbg

8>><>>:
9>>=>>;

þ

½Ks� ½Qsf � 0

0 ½Kff � ½Kfb�

0 ½Kbf � ½Kbb�

2664
3775
fusg

fpf g

fpbg

8>><>>:
9>>=>>; ¼

ffsg

fff g

½U��Thkjif~pð1Þg=h

8>><>>:
9>>=>>;: ð89Þ

Note that an additional damping term appears in Eq. (89).
Comparing the expression of [E0] in Eq. (29a) with the Sommerfeld
radiation condition (see also Eq. (6))

@p
@x
¼ �

_p
c

i:e: €ux ¼ �
1
q
@p
@x
¼

_p
qc

ð90Þ

it is found that the damping term is equivalent to the Sommerfeld
radiation boundary, which is provided in ABAQUS. This term is
therefore evaluated and assembled by the internal code of ABAQUS.
The coupling term ½U��Thkjif~pð1Þg=h on the right-hand side of
Eq. (89) represents the contribution of the high-order terms of the
doubly asymptotic boundary. It can be regarded as an external load
applied on the truncated boundary. When this term is set to zero,
the high-order boundary condition degenerates to the Sommerfeld
radiation boundary. As shown in Eq. (85), its value depends on the
response history of the hydrodynamic pressure {p}. For efficiency
consideration in the numerical implementation, the hydrodynamic
pressure {p} is transformed to the modal hydrodynamic pressure
(Eq. (38))

f~pg ¼ ½U��1fpg: ð91Þ

Using Eq. (91) and multiplying Eq. (85) by h/kj leads to

~pj ¼ �
2h
ckj

_~pð1Þj � ~pð2Þj : ð92Þ

Eqs. (92), (86), (87) and (88) are decoupled for individual
modes. For each mode, they are assembled as a system of ordinary
differential equations for the auxiliary variables

½KA�fzA;jðtÞg þ
h

ckj
½CA�f _zA;jðtÞg ¼ ffA;jðtÞg; ð93Þ

where the vector {zA,j(t)} consists of the auxiliary variables of mode j
(the semicolon ‘‘;’’ stands for the vertical concatenation of vectors)

fzA;jðtÞg ¼ ~pð1Þj ; � � � ; ~pðMH Þ
j ; ~pð0ÞL;j ; ~pð1ÞL;j ; � � � ; ~pðMLÞ

L;j

n o
: ð94Þ

The only nonzero entry on the right-hand side is the modal
hydrodynamic pressure ~pj determined from Eq. (91)

ffA;jðtÞg ¼ f�~pj; 0; � � � ; 0; 0; 0; � � � ; 0g: ð95Þ



Fig. 3. Minimum real part of eigenvalues of coefficient matrices (Eq. (98)) vs. order
of open boundary MH = ML.

z

Rigid
Dam Doubly asymptotic boundary
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Fig. 4. Rigid dam with a semi-infinite reservoir of constant depth.

Fig. 5. Ricker wavelet load: (a) time

Fig. 6. Hydrodynamic pressure at heel of dam under Ricker wavelet accelerat

X. Wang et al. / Computers and Structures 89 (2011) 668–680 675
The coefficient matrices are expressed as

½KA� ¼

0 1

1 . .
. . .

.

. .
.

0 1
1 ð�1ÞMH 0

0 ð�1ÞMHþ12 . .
.

. .
. . .

.
0

0 ð�1ÞMHþML 2

2666666666666664

3777777777777775
;

ð96Þ

½CA� ¼

ð�1Þ02 0

0 . .
. . .

.

. .
.

ð�1ÞMH�12 0

0 ð�1ÞMH 1

1 0 . .
.

. .
. . .

.
1

1 0

26666666666666664

37777777777777775
: ð97Þ

To evaluate the stability of Eq. (93), the generalized eigenvalue
problem

½KA�f/Ag ¼ kA½CA�f/Ag; ð98Þ

is analyzed for various orders of the doubly asymptotic open
boundary. The minimum value of the real parts of all the eigen-
history; (b) Fourier transform.

ion: (a) singly asymptotic boundaries; (b) doubly asymptotic boundaries.
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values, denoted as min (Re(kA)), is plotted in Fig. 3 up to the order
MH = ML = 100. It is observed that the real parts of all the eigen-
values kA are positive. As kjc/h is always positive, Eq. (93) is asymp-
totically stable.

Eq. (89) for the near field and Eq. (93) for the far field are cou-
pled by the auxiliary variables f~pð1Þg. These two sets of equations
are solved by a sequential staggered implicit-implicit partitioned
procedure proposed in References [35,36]. Eq. (89) is integrated
implicitly by using the trapezoidal rule to evaluate the hydrody-
namic pressure. The value of the auxiliary variables f~pð1Þg at time
station tn+1 is obtained from the last-solution extrapolation predic-
tor [35,36]

f~pð1Þgp
nþ1 ¼ f~pð1Þgn: ð99Þ

The auxiliary variables f~pð1Þg are obtained by integrating Eq.
(93) for prescribed hydrodynamic pressure {p} (Eqs. (91) and (95)).

Based on the restart function of ABAQUS, a two-way data-ex-
change sequential coupling scheme is proposed to solve Eqs. (89)
and (93) alternately. The algorithm proceeds as follows:

1. Initialize variables {u}0 and {p}0 in Eq. (89) and {zA,j}0 = 0 for
each mode in Eq. (93);

2. Extract f~pð1Þgn from {zA,j}n of each mode (Eq. (94)) and assign to
f~pð1Þgp

nþ1 (the last-solution extrapolation predictor (Eq. (99));
3. Form the right-hand term of Eq. (89), compute {u}n+1 and {p}n+1

in ABAQUS by using an implicit method;
4. Calculate the modal hydrodynamic pressure f~pgnþ1 by using Eq.

(91) and form the right-hand term of Eq. (93).
5. Compute {zA,j}n+1 in home code for each mode by using the

implicit method;
6. Increment n to n + 1 and go to Step 2.

From the point of view of wave propagation, this high-order
doubly asymptotic open boundary is spatially global as all the de-
grees of freedom are coupled via the eigenvectors [U] as shown
in Eq. (38). In its numerical implementation shown in Eq. (89),
the Sommerfeld boundary term expressed as the damping matrix
Table 1
Computer time for doubly asymptotic open boundaries of various orders.

Order (MH = ML) 5 10 15 20
CPU time (sec.) 18.99 27.80 36.17 44.75

Table 2
Computer time for doubly asymptotic open boundaries with various time durations of
analysis.

Time durations ð�t ¼ tc=hÞ 20 40 60 80
CPU time (sec.) 6.92 13.78 20.75 27.80

Fig. 7. Triangular impulse of acceleration: (
is spatially local. The term ½U��Thkjif~pð1Þg=h is obtained by solving
a system of decoupled equations (Eq. (93)) whose number of equa-
tions is equal to the number of degrees of freedom on the truncated
boundary. Therefore, from the point of view of computational cost,
this open boundary condition is spatially local.

8. Numerical examples

Two numerical examples are analyzed to evaluate the accuracy
and efficiency of the present doubly asymptotic open boundary
condition. The first example is a rigid dam with a vertical upstream
face and a semi-infinite reservoir of constant depth. The doubly
asymptotic open boundary is applied directly on the upstream face
of the dam. The computational efficiency of the present technique
is evaluated by measuring the computer time. The accuracy of the
results is assessed by comparing with the analytical solution ob-
tained by Chopra [2]. The second example is a flexible dam with
an irregular near filed of the reservoir. The open boundary is em-
ployed to represent the regular far field of the reservoir. The results
are compared with extended mesh solutions.

The time integration of Eqs. (89) and (93) are both performed by
using the implicit Newmark method with c = 0.5 and b = 0.25 (i.e.
trapezoidal integration).

8.1. Rigid dam

A rigid dam with a vertical upstream face is shown in Fig. 4. The
constant depth of the reservoir extending to infinity is h = 180 m.
The pressure wave velocity is c = 1438.7 m/s and the density is
q = 1000 kg/m3. The high-order doubly asymptotic open boundary
is directly applied on the interface between rigid dam and reser-
voir. Twelve 3-node quadratic line elements are used to discretize
the interface and the nodal interval is 7.5 m. The coupling with
ABAQUS is not required. Eq. (84) replaces Eq. (89) in the sequential
staggered implicit-implicit partitioned procedure with the last-
solution extrapolation predictor (Eq. (99)).

The horizontal acceleration of the rigid dam is prescribed as a
Ricker wavelet described by

aðtÞ ¼ AR 1� 2
t � ts

t0

� �2
 !

exp � t � ts

t0

� �2
 !

; ð100Þ

where ts is the time when the wavelet reaches its maximum, 2/t0 is
the dominant angular frequency of the wavelet and AR is the ampli-
tude. The Fourier transform of the wavelet is given as

AðxÞ ¼ 0:5
ffiffiffiffi
p
p

ARt0ðxt0Þ2e�0:25ðxt0Þ2 : ð101Þ

The first cut-off frequency of the reservoir is x1 = pc/2h which
corresponds to a dimensionless frequency a0 = xh/c = p/2. The
parameters of the Ricker wavelet are chosen as �ts ¼ tsc=h ¼
5;�t0 ¼ t0c=h ¼ 4=p and AR = 1. Its dominant frequency is equal to
a) time history; (b) Fourier transform.



Fig. 10. Hydrodynamic pressure at heel of the dam due to earthquake.
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the first cut-off frequency of the reservoir. The time history and
Fourier transform of the Ricker wavelet are shown in Fig. 5(a) and
(b), respectively. The time step Dt = 0.001h/c is chosen.

The singly asymptotic boundary condition constructed by
including only the high-frequency expansion is investigated. It is
demonstrated in Ref. [19] that this boundary condition is closely
related to several high-order transmitting boundaries. When the
excitation frequency is lower than the cut-off frequency of a mode,
‘‘fictitious reflections’’ are observed in a long-time analysis of the
modal response. For the case of the rigid dam, the hydrodynamic
pressure responses at the dam heel are computed with the singly
asymptotic boundary condition of orders MH = 11, MH = 21 and
MH = 99. The results are plotted in Fig. 6(a). The analytical solution
[2] is shown for comparison. The responses are accurate at early
time, but ‘‘fictitious reflections’’ occur at late time (for clarity, the
results for MH = 11 and MH = 21 are only plotted up to the arrival
of ‘‘fictitious reflections’’). Although the arrival time of the ‘‘ficti-
tious reflections’’ increases with the order of boundary condition,
the rate of increase is slow. It is only after the order is increased
to MH = 99 that a reasonably accurate result is obtained for a dura-
tion of �t ¼ tc=h ¼ 80. Therefore, singly asymptotic boundaries are
not suitable for long-time computation of dam–reservoir
interaction.

The doubly asymptotic boundary condition leads to a significant
improvement in accuracy at the same computational cost. The sin-
Fig. 8. Hydrodynamic pressure at heel of dam due to triangular impulse load.

Fig. 9. Time history of El Centro earthquake.
gly asymptotic boundary conditions of orders MH = 11 and MH = 21
have 12 terms and 22 terms, respectively, in the continued fraction
solution of dynamic stiffness. The orders of the doubly asymptotic
boundary conditions having the same number of terms are
MH = ML = 5 and MH = ML = 10, respectively. The results obtained
with them are plotted in Fig. 6(b). It is observed that ‘‘fictitious
reflections’’ do not occur as expected from the investigation on a sin-
gle mode.[19]. By comparing Fig. 6(b) with (a), it can be found that
the doubly asymptotic boundary is much more accurate than the
singly asymptotic boundary with the same number of terms. The
MH = ML = 10 doubly asymptotic boundary condition is even more
accurate than the MH = 99 singly asymptotic boundary condition.

The computer time is recorded on a laptop with a 2.53 GHz
dual-core CPU. For an analysis of 80000 time steps, the computer
time of the present high-order doubly asymptotic boundary are
listed in Table 1 for open boundaries of orders MH = ML = 5, =10,
=15 and =20. It is observed that the computer time increases line-
arly with the order of the open boundary. The increase in computer
time with the number of time steps is also investigated. By using
the order MH = ML = 10 boundary condition, the analyses are per-
formed for durations of dimensionless time �t ¼ tc=h ¼ 20, 40, 60
and 80. The computer time is shown in Table 2. As expected for this
temporally local open boundary, the computer time increases lin-
early with the number of time steps.

A triangular impulse of acceleration that has different frequency
characteristics from the Ricker wavelet is addressed. The triangular
impulse a(t) with a duration 3h/c and a peak value AT is shown in
Fig. 7(a). Its Fourier transform A(x) is illustrated in Fig. 7(b). The
time step is chosen as Dt = 0.001h/c. The hydrodynamic pressure
at the heel of dam is plotted in Fig. 8. The result obtained with
the order MH = ML = 10 doubly asymptotic boundary is in excellent
agreement with the analytical solution.

To investigate the performance of the presented doubly asymp-
totic open boundary under earthquake load, the El Centro earth-
quake ground motions in the direction of North–South is applied
(see Fig. 9). The size of time step is selected as Dt = 0.0001 s. The
order of the doubly asymptotic boundary is MH = ML = 10. The
hydrodynamic pressure response at the heel of dam is shown in
Fig. 10. Again, no fictitious reflections occur. Excellent agreement
with the analytical solution is achieved.
8.2. Flexible dam

A typical flexible gravity dam–reservoir system with an irregu-
lar near field is shown in Fig. 11(a). The dam body has a modulus of



Fig. 12. Hydrodynamic pressure at heel of dam under triangular-impulse
acceleration.

Fig. 13. Horizontal displacement at crest of dam under triangular-impulse
acceleration.

Fig. 11. A gravity dam–reservoir system with irregular near field: (a) geometry; (b) mesh.
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elasticity E = 35 GPa, Poisson’s ratio t = 0.2 and mass density q
= 2400 kg/m3. The physical property of water is the same as that
in the example of the rigid dam.

The finite element mesh is shown in Fig. 11(b). The system is di-
vided into three parts: the dam body, the near-field reservoir and
the far-field reservoir with constant depth. The dam body is dis-
cretized with 52 eight-node solid elements, and the near-field res-
ervoir with 156 eight-node acoustic fluid elements. The solid
elements and acoustic fluid elements are coupled on the upstream
dam face by 13 three-node interface elements. The far-field reser-
voir is modeled by 13 three-node quadratic line elements. The ele-
ments share the same nodes and are compatible on the truncated



Fig. 14. Hydrodynamic pressure at heel of dam under El Centro ground motion.

Fig. 15. Horizontal displacement at crest of dam under El Centro ground motion.
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boundary with those of the near-field acoustic fluid elements. The
total number of nodes in the whole model is 653.

The triangular impulse (Fig. 7) is imposed as the horizontal
acceleration at the base of the dam. The time step is D t = 0.01h/
c. During one time step, the pressure waves travel about one quar-
ter of the distance between two adjacent nodes. 8000 time steps
are computed. The responses of the hydrodynamic pressure at
the heel of dam and the horizontal displacement at the crest of
dam are shown in Figs. 12 and 13, respectively. To verify the re-
sults, an extended mesh covering a far-field reservoir region of
7200 m is analysed. This region is discretized with 5733 eight-node
elements of uniform size (not shown). The total number of nodes is
18067. The size of extended mesh is sufficiently large to avoid the
pollution of the dam response by the waves reflected on the trun-
cated boundary for a time duration of t = 80h/c � 10 s. Excellent
agreement between the present solutions and the extended mesh
solutions is observed.

The response of the dam–reservoir system subjected to the El
Centro earthquake ground motion (Fig. 9) is analyzed. The time
step is chosen as 0.002 s during which the pressure wave travels
about one third of the distance between two adjacent nodes. The
responses of the first 20 s are plotted in Fig. 14 for the hydrody-
namic pressure at the heel of dam and in Fig. 15 for the horizontal
displacement at the crest of dam. The results agree very well with
the extended mesh solutions during the first 10 s (before the waves
reflected on the truncated boundary arrive at the dam).
9. Conclusions

A high-order doubly asymptotic open boundary condition is
developed for evaluating the hydrodynamic pressure in a semi-
infinite reservoir of constant depth. It is established on a vertical
truncated boundary by using the scaled boundary finite element
method. The same isoparametric finite elements are used in mod-
eling the near field and the far field of a semi-infinite reservoir. The
open boundary condition is split into the Somerfield radiation
boundary and an external nodal load. Making use of the restart
function in the general-purpose finite element package ABAQUS,
the response of the gravity dam–reservoir system is solved by a
sequential staggered implicit-implicit partitioned procedure. From
the point of view of computational cost, this boundary condition is
local in both space and time. Numerical examples demonstrate the
excellent performance of this present technique for not only early-
time but also long-time computations. The open boundary condi-
tion is stable and converges rapidly as the order increases.
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